Haar's Half Measure

What I talk about when I talk about physics.

27 Jul 2023

Baby quantum optics

So instead of playing with spin-1/21/2 particles as usual in superconducting qubits, we’re dealing with photons. It’s good to review some really basic stuff.

Freshen your mind

In this very first section let us review basic ingredients of quantum mechanics 1, specifically the quantum harmonic oscillator and its coherent states.

The harmonic oscillator problem can be formulation in the matrix representation, associating with the concepts of Fock space and occupation number. Let us start from the eigenfunctions of the harmonic oscillator ψn(x)\psi_n(x), which form a complete orthonormal basis for the corresponding Hilbert space. The following vectors

ψ0[100]0,ψ1[010]1,ψn[0n]n. \begin{align} \psi_0 \to \begin{bmatrix} 1 \newline 0 \newline 0 \newline \vdots\end{bmatrix} \equiv |0\rangle, \quad \psi_1\to \begin{bmatrix} 0 \newline 1 \newline 0 \newline \vdots\end{bmatrix} \equiv |1\rangle, \quad \psi_n \to\begin{bmatrix}0 \newline \vdots \newline n \newline \vdots\end{bmatrix} \equiv |n\rangle. \end{align}

are the column vector representation of the eigenfunctions ψi\psi_i. These vectors are, by construction orthonormal nm=δnm\langle n|m\rangle = \delta_{nm}, and form the so called Fock space or occupation number space

The state labelled nn can be constructed from the ground state by repeatedly adding quantization of energy by the ladder operator,

n=1n!(a)n0 \begin{align} |n\rangle = \dfrac{1}{\sqrt{n!}}(a^\dagger)^n |0\rangle \end{align}

Since {n}\{|n\rangle\} form a complete orthonormal basis, we can get the matrix representation for any operator. For example, the Hamiltonian written in the Fock state basis is

mHn=ω(n+0.5)mn =ω[1/20003/20005/2] \begin{align} \langle m | {H} | n \rangle &= \hbar\omega(n+0.5)\langle m |n\rangle\ &= \hbar\omega \begin{bmatrix}1/2 & 0 & 0 & \dots \newline 0 & 3/2 & 0 & \dots \newline 0 & 0 & 5/2 & \dots \newline \vdots & \dots & \dots & \ddots \end{bmatrix} \end{align}

Coherent states

Coherent states play a pivotal role in quantum optics. The operator we’re about to derive is named after Roy J. Glauber, Nobel prize laureate to the quantum theory of optical coherence.

Imagining a laser. How many photons does a laser beam have? It seems indefinitely many. But what makes laser such a breakthrough at the time of its invention is that although we have a massive amount of photons, they all pick up a precisely defined phase. A white light, on the other hand, is a statistical mixture of many many photons with random phases and oscillating orientations.

Definition: A coherent state α|\alpha\rangle, or a Glauber state, is defined as eigenstate of the annihilation operator a{a} with eigenvalues αC\alpha\in\mathbb{C}, i.e. aα=αα{a}|\alpha\rangle = \alpha|\alpha\rangle.

Notice that a{a} is a non-hermitian operator[^1], hence the phase α\alpha is complex-valued, with a certain amplitude α|\alpha| and a phase α=αeiφ\alpha=|\alpha|e^{i\varphi}.

Properties of coherent states

First, let us calculate the expectation value of energy in a certain coherent state α|\alpha\rangle.

H=αHα=ωαn+12α=ω(α2+12) \langle {H} \rangle = \langle \alpha|{H}|\alpha\rangle = \hbar\omega\langle \alpha|{n}+\dfrac{1}{2}|\alpha\rangle = \hbar\omega(|\alpha|^2+\dfrac{1}{2})

Phase shifting operator

Now we introduce the phase shifting operator,

U(θ)=exp(iθn) \begin{align} U(\theta)=\exp{\left(-i\theta{n}\right)} \end{align}

where n{n} is the occupation number operator. It’s worth noting that

U(θ)aU(θ)=aeiθ \begin{align} U^\dagger(\theta){a}U(\theta)= ae^{-i\theta} \end{align}

To prove this, take the differentation w.r.t to θ\theta on the left hand side,

d/dθ(UaU)=d/dθ(eiθnaeiθn)=iUnaUiUanU=iU[n,a]U=iU(aaaaaa)U=iU([a,a]a)U=iUaU \begin{align} d/d\theta\left(U^\dagger{a}U\right)&= d/d\theta\left(e^{i\theta n}ae^{-i\theta n }\right)\newline &= i U^\dagger na U - iU^\dagger a nU\newline &=iU^\dagger[n, a]U\newline &=iU^\dagger(a^\dagger a a - aa^\dagger a)U\newline &=iU^\dagger([a^\dagger, a]a)U\newline &=-iU^\dagger a U \end{align}

Hence,

d(UaU)UaU=idθln(UaU)=iθ+CUaU=A(0)eiθ \begin{align} \int\dfrac{d(U^\dagger a U)}{U^\dagger a U} = \int-id\theta\newline \ln(U^\dagger a U) = -i\theta + C\newline U^\dagger a U = A(0)e^{-i\theta} \end{align}

The constant of integral is found by letting θ=0\theta=0, and one finds that U(0)aU(0)=aU^\dagger(0)aU(0)=a, hence A(0)=aA(0)=a. \Box

The phase shifting U(θ)U(\theta) does two things: (1) it gives the amplitude operator (or annihilation operator) a phase shift θ\theta; and (2) it shifts the phase of a coherent state, i.e. rotating the coherence state by an angle θ\theta in the phase space (q,p)(q, p). The latter can be seen by considering

Uaα=αUαUaUUα=αUαaeiθUα=αUαaα=αeiθα \begin{align} Ua|\alpha\rangle &= \alpha U|\alpha\rangle\newline U a U^\dagger U|\alpha\rangle &= \alpha U|\alpha\rangle\newline ae^{i\theta}U|\alpha\rangle &= \alpha U|\alpha\rangle\newline a |\alpha’\rangle &= \alpha e^{-i\theta}|\alpha’\rangle \end{align}

which from the definition of the coherent state, aα=ααa|\alpha’\rangle=\alpha’|\alpha’\rangle, implying that α=αeiθ\alpha’=\alpha e^{-i\theta}. \Box

In conclusion,

U(θ)α=αeiθ U(\theta)|\alpha\rangle = |\alpha e^{-i\theta}\rangle

Displacement operator

Another type of important operator is the displacement operator

D(α)=exp(αaαa) \begin{align} D(\alpha) = \exp\left(\alpha a^\dagger - \alpha^* a\right) \end{align}

where α=αeiφ\alpha=|\alpha|e^{i\varphi} is a complex number and a(a)a (a^\dagger) are ladder operators. One can verify that the displacement operator is unitary. But first, let us re-write the displacement operator in another form. Using a special case of the Baker–Campbell–Hausdorff formula, for any AA and BB that commutes with [A,B][A, B], we have

exp(A+B)=exp(A)exp(B)exp(12[A,B]) \begin{align} \exp(A+B) = \exp (A) \exp (B) \exp\left(-\dfrac{1}{2}[A, B]\right) \end{align}

Since [a,a]=1[a,a^\dagger]=1, [a,[a,a]]=[a,[a,a]]=0[a,[a,a^\dagger]]=[a^\dagger,[a,a^\dagger]]=0. Hence we can write

D(α)=exp(αa)exp(αa)exp(12[αa,αa])=exp(αa)exp(αa)exp(α2/2)=exp(α2/2)exp(αa)exp(αa) \begin{align} D(\alpha) &= \exp(\alpha a^\dagger)\exp(-\alpha^* a)\exp\left(-\dfrac{1}{2}[\alpha a^\dagger, - \alpha^* a]\right)\newline &= \exp(\alpha a^\dagger) \exp(-\alpha^*a)\exp(-{|\alpha|^2}/{2})\newline &= \exp(-{|\alpha|^2}/{2})\exp(\alpha a^\dagger) \exp(-\alpha^*a) \end{align}

Now the adjoint D(α)D^\dagger(\alpha),

D(α)=exp(αaαa)=exp(αa)exp(αa)exp(12[αa,αa])=exp(α2/2)exp(αa)exp(αa) \begin{align} D^\dagger(\alpha) &= \exp\left(\alpha^* a - \alpha a^\dagger\right)\newline &= \exp(\alpha^* a)\exp(-\alpha a^\dagger) \exp\left(-\dfrac{1}{2}[\alpha^*a, -\alpha a^\dagger]\right)\newline &= \exp\left(|\alpha|^2/2\right) \exp(\alpha^{*} a) \exp(-\alpha a^\dagger) \end{align}

And their product,

D(α)D(α)=exp(α2/2)exp(αa)exp(αa)×exp(α2/2)exp(αa)exp(αa)=I \begin{align} D^\dagger(\alpha)D(\alpha) = \exp\left(|\alpha|^2/2\right) &\exp(\alpha^{*} a) \exp(-\alpha a^\dagger)\newline &\times \exp(-{|\alpha|^2}/{2})\exp(\alpha a^\dagger) \exp(-\alpha^*a)= I \end{align}

Notice that

D(α)=exp(αa+αa)=exp(αaαa)D(α) \begin{align} D(-\alpha) &= \exp\left(-\alpha a^\dagger +\alpha^* a\right)\newline &=\exp\left(\alpha^* a - \alpha a^\dagger\right)\equiv D^\dagger(\alpha) \end{align}

Some more important properties of the displacement operators

D(α)aD(α)=exp(αaαa)aexp(αaαa)=a+αD(α)aD(α)=exp(αaαa)aexp(αaαa)=a+α \begin{align} D^\dagger(\alpha) a D(\alpha) &= \exp\left(\alpha^* a - \alpha a^\dagger\right)a \exp\left(\alpha a^\dagger - \alpha^* a\right) = a +\alpha\newline D^\dagger(\alpha) a^\dagger D(\alpha) &= \exp\left(\alpha^* a - \alpha a^\dagger\right)a^\dagger \exp \left(\alpha a^\dagger - \alpha^* a\right) = a^\dagger + \alpha^* \end{align}

These can be proven using the BCH formula again. For example, the operator DaDD^\dagger a D results in

DaD=a+[(αaαa),a]+12![αaαa,[αaαa,a]]+=a+α[a,a]α[a,a]=a+α.  \begin{align} D^\dagger a D &= a + [(\alpha^* a - \alpha a^\dagger), a] + \dfrac{1}{2!}[\alpha^* a - \alpha a^\dagger, [\alpha^* a - \alpha a^\dagger, a]] + \dots\newline &= a + \alpha^* [a, a] - \alpha[a^\dagger, a] \newline &= a + \alpha.\ \Box \end{align}

Lastly, displacement of a total of α+β\alpha+\beta,

D(α+β)=exp((α+β)a(α+β)a)=exp(αaαa+βaβa)=exp(αaαa)exp(βaβa)exp(12[αaαa,βaβa])=exp(12(αβαβ))exp(αaαa)exp(βaβa)=exp(iIm(αβ))D(α)D(β) \begin{align} D(\alpha+\beta) &= \exp\left((\alpha+\beta)a^\dagger - (\alpha+\beta)^* a\right)\newline &= \exp\left(\alpha a^\dagger-\alpha^* a + \beta a^\dagger -\beta^* a\right)\newline &=\exp\left(\alpha a^\dagger - \alpha^* a\right)\exp\left(\beta a^\dagger - \beta^* a\right)\exp\left(-\dfrac{1}{2}[\alpha a^\dagger - \alpha^* a, \beta a^\dagger - \beta^* a]\right)\newline &=\exp\left(-\dfrac{1}{2}(\alpha\beta^*-\alpha^*\beta)\right)\exp\left(\alpha a^\dagger - \alpha^* a\right)\exp\left(\beta a^\dagger - \beta^* a\right)\newline &=\exp\left(-i\text{Im}(\alpha\beta^*)\right)D(\alpha)D(\beta) \end{align}

Oh by the way let us calculate some commutators, as they will come in handy later,

[a,D(α)]=[a,exp(α2/2)exp(αa)exp(αa)]=exp(α2/2)[a,exp(αa)exp(αa)]=exp(α2/2)([a,exp(αa)]exp(αa)+exp(αa)[a,exp(αa)]) \begin{align} [a, D(\alpha)] &=[a, \exp(|\alpha|^2/2)\exp(\alpha a^\dagger)\exp(-\alpha^* a)]\newline &=\exp(-|\alpha|^2/2)[a, \exp(\alpha a^\dagger)\exp(-\alpha^* a)]\newline &=\exp(-|\alpha|^2/2)\left([a, \exp(\alpha a^\dagger)]\exp(-\alpha^* a)+\exp(\alpha a^\dagger)[a, \exp(-\alpha^* a)]\right) \end{align}

Now apparently [a,exp(αa)]=0[a, \exp(-\alpha^* a)]=0. The other one [a,exp(αa)][a, \exp(\alpha a^\dagger)] is a bit more tricky. Here’s a result that should help,

{[A,[A,B]]=0[B,[A,B]]=0[A,f(B)]=[A,B]f(B)\begin{align}\begin{cases} [A, [A,B]]=0\newline [B, [A,B]]=0\end{cases} \rightarrow [A, f(B)]= [A,B]f’(B) \end{align}

Here we already knew that [a,[a,a]]=[a,[a,a]]=0[a, [a, a^\dagger]]=[a^\dagger, [a, a^\dagger]]=0. Hence, the commutator of aa with a real function of aa^\dagger should be

[a,exp(αa)]=[a,a]αexp(αa). [a, \exp(\alpha a^\dagger)] = [a, a^\dagger]\alpha \exp(\alpha a^\dagger).

In other words,

[a,D(α)]=αexp(α2/2)exp(αa)exp(αa)=αexp(αaαa)αD(α) \begin{align} [a, D(\alpha)] &= \alpha\exp(-|\alpha|^2/2)\exp(\alpha a^\dagger)\exp(-\alpha^* a)\newline &=\alpha \exp(\alpha a^\dagger - \alpha^* a)\equiv \alpha D(\alpha) \end{align}

By analogy, the commutator [a,D(α)][a^\dagger, D(\alpha)] is

[a,D(α)]=αD(α) \begin{align} [a^\dagger, D(\alpha)] = \alpha^* D(\alpha) \end{align}

Now we can make use of these commutators to review some of the results derived above. For example,

[a,D(α)]=αD(α)aD(α)=αD(α)+D(α)a [a, D(\alpha)]=\alpha D(\alpha) \leftrightarrow a D(\alpha) = \alpha D(\alpha) + D(\alpha) a

Hence a unitary transformation D(α)aD(α)D^\dagger(\alpha) a D(\alpha) can be written as

D(α)aD(α)=D(α)(αD(α)+D(α)a)=αD(α)D(α)+D(α)D(α)a=α+a\begin{align} D^\dagger(\alpha) a D(\alpha)&=D^\dagger(\alpha)\left(\alpha D(\alpha) + D(\alpha) a\right)\newline &=\alpha D^\dagger(\alpha)D(\alpha)+D^\dagger(\alpha)D(\alpha)a\newline &=\alpha + a \end{align}

This is another way of proving the above results of important properties of displacement operators.

Generation of coherent states using displacement operator

Here’s a nice theorem: the coherent state α|\alpha\rangle is generated from the vacuum state 0|0\rangle by the displacement operator D(α)D(\alpha).

α=D(α)0 \begin{align} |\alpha\rangle = D(\alpha) |0\rangle \end{align}

How to prove this? We should probably consider the action of a(D(α)0)a (D(\alpha)|0\rangle). If this turns out to be αα\alpha’|\alpha’\rangle, where α=D(α)0|\alpha’\rangle= D(\alpha)|0\rangle, then we should have proven it.

aD(α)0=(αD(α)+D(α)a)0=αD(α)0+D(α)a0=αD(α)0 \begin{align} aD(\alpha)|0\rangle &= \left(\alpha D(\alpha) + D(\alpha) a\right)|0\rangle\newline &= \alpha D(\alpha) |0\rangle + D(\alpha) a |0\rangle\newline &= \alpha D(\alpha) |0\rangle \end{align}

meaning that D(α)0D(\alpha)|0\rangle is indeed an eigenvector of aa, hence it is must be a coherent state.

Next time, we'll talk about "How a spherically symmetric cow is different from a symmetrically spherical cow."